<返回

Python卷积函数怎么使用

时间:2023-05-21

卷积函数

python提供了多种卷积方案,相比之下,定义在ndimage中的卷积函数,在功能上比numpysignal中的卷积要稍微复杂一些,这点仅从输入参数的多少就可略窥一二

numpy.convolve(a, v, mode='full')scipy.ndimage.convolve1d(input, weights, axis=-1, output=None, mode='reflect', cval=0.0, origin=0)scipy.signal.convolve(in1, in2, mode='full', method='auto')scipy.ndimage.convolve(input, weights, output=None, mode='reflect', cval=0.0, origin=0)

前两者为1维卷积函数,且ndimage可对多维数组沿着单个坐标轴进行卷积操作,后两者为多维卷积。

numpy和signal中的卷积函数,其mode都有三种,用以调节卷积后的边缘特性,如果输入的两个卷积对象的维度分别是N NN和M MM,则这三种模式的输出结果为

  • full: 输出维度N + M &minus; 1 N+M-1N+M&minus;1,其最后一点的信号完全不交叠,故而边缘效应明显。

  • same:输出维度max ⁡ ( M , N ) max(M,N)max(M,N),边缘效应仍然可见

  • valid:输出维度∣ M &minus; N ∣ |M-N|∣M&minus;N∣,只返回完全交叠的区域,相当于把存在边缘效应的点都率除掉了

ndimage中的convolve针对边缘效应,对图像进行扩展,而其mode决定的就是扩展之后的填充格式,设待滤波数组为a b c d,则在不同的模式下,对边缘进行如下填充


左侧填充数据右侧填充
reflectd c b aa b c dd c b a
constantk k k ka b c dk k k k
nearesta a a aa b c dd d d d
mirrord c ba b c dc b a
wrapa b c da b c da b c d

其中,k通过参数cval设定。

这五种修改边界的方法,在scipy.ndimage的函数中十分普遍,尤其是涉及到卷积的滤波函数,堪称标配。

对比测试

接下来针对这些不同的卷积函数,做一下性能测试,用5 &times; 5的卷积模板,对1000 &times; 1000的矩阵进行卷积计算,来看一下不同实现方案的卷积,其速度如何

import numpy as npimport scipy.signal as ssimport scipy.ndimage as snfrom timeit import timeitA = np.random.rand(1000,1000)B = np.random.rand(5,5)timeit(lambda : ss.convolve(A, B), number=10)# 0.418timeit(lambda : sn.convolve(A, B), number=10)# 0.126

相比之下,ndimage中的卷积显然是更高效的。

接下来测试一下一维卷积的表现

A = np.random.rand(10000)B = np.random.rand(15)timeit(lambda : np.convolve(A, B), number=1000)# 0.15256029999727616timeit(lambda : ss.convolve(A, B), number=1000)# 0.1231262000001152timeit(lambda : sn.convolve(A, B), number=1000)# 0.09218210000108229timeit(lambda : sn.convolve1d(A, B), number=1000)# 0.03915820000111125

相比之下,convolve1d不愧是写明了1d的卷积函数,速度最快,而numpy中提供的函数速度最慢。

卷积应用

卷积操作经常被作用在图像滤波以及边缘提取上,例如,通过类似下面这样的矩阵,可以将图像的纵向的边缘提取出来。

Python卷积函数怎么使用

下面做一个简单的测试

from scipy.misc import ascentimport matplotlib.pyplot as pltimg = ascent()temp = np.zeros([3,3])temp[:,0] = -1temp[:,2] = 1edge = sn.convolve(img, temp)fig = plt.figure()ax = fig.add_subplot(121)ax.imshow(img)ax = fig.add_subplot(122)ax.imshow(edge)plt.show()

以上就是Python卷积函数怎么使用的详细内容,更多请关注Gxl网其它相关文章!

相关文章
最新文章
热门推荐
网友评论